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Prioritising compounds with a lower chance of causing toxicity, early in the drug discovery process,

would help to address the high attrition rate in pharmaceutical R&D. Expert knowledge-based

prediction of toxicity can alert chemists if their proposed compounds are likely to have an increased

likelihood of causing toxicity. We will discuss how multiparameter optimisation approaches can be used

to balance the potential for toxicity with other properties required in a high-quality candidate drug,

giving appropriate weight to the alert in the selection of compounds. Furthermore, we will describe how

information about the region of a compound that triggers a toxicity alert can be interactively visualised

to guide the modification of a compound to reduce the likelihood of toxicity.
Introduction
Toxicity of drugs and clinical candidates remains a significant issue

for the pharmaceutical industry, leading to increased attrition and

cost, late-stage failures and market withdrawals. Recent data from

CMR-International [1] indicate that 22% of drug candidates enter-

ing clinical development in the period 2006–2010 failed owing to

nonclinical toxicology or clinical safety issues. In preclinical

development, toxicity and safety issues accounted for 54% of

failures (18% of all preclinical candidates). These expensive late-

stage failures account for a large proportion of the cost of phar-

maceutical R&D, recently estimated to be US$1.8 billion per

marketed drug [2].

For many marketed drugs, toxicity remains an issue, causing

adverse drug reactions (ADRs) and leading to black-box warnings,

restrictions on use and even withdrawals. These dramatically

reduce or even eliminate the return on R&D and marketing

investments and harm the reputation of pharmaceutical compa-

nies and the industry as a whole. A study by Lasser et al. [3]

indicates that, of 548 new chemical entities approved by the

FDA between 1975 and 2000, 10.2% acquired one or more

black-box warnings and 2.9% were withdrawn. Recent, high-pro-

file examples of market withdrawals include cerivastatin (2001),

valdecoxib (2005, USA) and rosiglitazone (2010, Europe). Of
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particular concern are idiosyncratic ADRs that, owing to their rare

occurrence, are unlikely to be detected during clinical trials.

From the sobering statistics above, it is clear that addressing

failures due to toxicity would have a dramatic effect on the

productivity of pharmaceutical R&D and the quality of the result-

ing drugs. Some toxicity is driven by the biological mechanism of

the intended pharmacological action of a compound, particularly

in the case of compounds intended for new targets for which the

association with a therapeutic indication has not yet been vali-

dated. However, a significant proportion of observed toxicities are

caused by unintended effects unrelated to the primary biological

target. In the latter cases, it should be possible to reduce risk by

focusing on structural motifs that are less likely to cause toxicity

due to known mechanisms. Alternatively, if a likelihood of toxi-

city being observed in the clinic can be identified early in the

process, in vitro or in vivo experiments can be prioritised to assess

this risk before additional, downstream investments are made.

In the mid-1990s, a similar observation was made regarding a

high rate of failure as a result of poor compound pharmacokinetics

(PK) in clinical trials [4]. This led to the introduction of in vitro

assays for high-throughput measurement of ADME properties in

early drug discovery [5] and development of computational, or

in silico, methods for the estimation of these properties [6,7].

The result has been a reduction in the proportion of clinical

failures as a result of PK issues from an estimated 39% in 1991
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BOX 1

Examples of the reasoning levels within Derek and their
definitions

Certain The proposition (prediction) is known
to be true

Probable There is at least one strong argument

for the proposition and none against it

Plausible The weight of evidence supports the

proposition

Equivocal There is an equal weight of evidence

for and against the proposition
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to approximately 10% in 2000 [8]. Unfortunately, during the same

period, the overall failure rate was unchanged and the proportion

of clinical failures attributed to toxicity or safety issues increased

from approximately 14% to 30%. This, in turn, has motivated a

recent trend in developing and introducing in vitro assays earlier in

the drug discovery process, to identify potentially toxic com-

pounds and halt their progression. Similarly, in silico methods

for the prediction of toxicity can help to guide the design and

selection of compounds with reduced risk of toxicity.

This article will focus on knowledge-based methods for predic-

tion of toxicity (also described as rule-based) that produce a semi-

quantitative estimate of toxicity hazards, based on experimental

precedence for similar compounds. A number of expert systems

have been developed that provide a rule-based approach to toxi-

city [9]. Other approaches, broadly described as statistical meth-

ods, rely on fitting a mathematical model of compound

characteristics to empirical data using a variety of techniques

including Support Vector Machines, Naive Bayes, Decision Trees

and Random Forest [10–14]. The output from knowledge-based

and statistical methods is the classification of compounds as toxic

or otherwise or predictions of a numerical measure of toxicity (e.g.

LD50). The principles that we discuss herein for the application of

in silico methods to address toxicity in early drug discovery can

apply equally to both approaches.

In the following sections we will describe the principles of

knowledge-based prediction of toxicity and the challenges posed

by application in early drug discovery. We will discuss how these

methods can be applied to the selection of compounds, giving

appropriate weight to predictions of toxicity against other impor-

tant factors, and provide feedback on strategies for redesign of drug

candidates to reduce toxicity risk. Finally, we will present two

applications of knowledge-based toxicity predictions – one for

recently approved drugs and the other in the context of a hypothe-

tical hit-to-lead project – before drawing some conclusions.

Knowledge-based prediction of compound toxicity
Expert knowledge-based predictive systems for small molecules are

designed to emulate the decision-making process of a group of

experts by applying a form of artificial intelligence whereby a

knowledge base of facts is used to make a prediction by inferring

relationships between facts through a process known as reasoning

[15,16]. This enables the introduction of associated data such as

reactivity or knowledge of the mechanism of action, and can cope

with uncertainty and conflicting data that are common in the field

of toxicity prediction. By contrast, purely statistical approaches

derive probabilities of toxicity by taking a dataset of compounds,

identifying descriptors that show a correlation to activity and use

this to predict the toxicity of novel compounds. Statistical systems

have the advantage of being fast to implement and can more

efficiently cope with large datasets when the endpoint is relatively

simple. Expert systems are particularly well suited to making

predictions for toxicities derived through multiple mechanisms

for which only incomplete datasets are available. Expert systems

can often provide more interpretable predictions with detailed

supporting documentation [9,17].

In silico systems in the field of toxicity typically predict hazard –

the possibility of a chemical causing harm [18]. Expert systems

frequently also provide an indication of the likelihood for the
prediction to be correct, supporting evidence and a reasoned

argument for the cause of the hazard, which might include an

expert analysis, a mechanistic explanation or even an adverse

outcome pathway (AOP) [19]. Although valuable, such predictions

normally require further analysis to derive the risk – the prob-

ability of that toxicity being observed. A key part of that analysis is

to determine the exposure of the chemical at the site of toxicity – a

step that requires an understanding of the dosing regimen, the

pharmacokinetics and potentially relevant biological details such

as species, age, disease state, sex and the potential for drug–drug

interactions. This means that a hazard prediction has to be con-

sidered in the context of a number of other factors to derive an

assessment of risk.

The Derek prediction engine (http://www.lhasalimited.org/)

[20], applied in the examples below, provides a prediction

(active/inactive) for each toxicity endpoint. If no evidence of

toxicity has been found then ‘No report’ (nothing to report) is

returned. A prediction of activity is typically associated with a

structural alert, identifying the motif triggering the positive pre-

diction, along with an associated likelihood. The likelihood qua-

lifies this prediction; some of the likelihoods relating to positive

predictions are shown in Box 1. In practise, it has been demon-

strated that likelihood can be taken as a level of confidence because

it correlates well with the accuracy of a prediction [21].

Expert systems are frequently applied in the later stages of drug

development [22,23], where it might be necessary to produce an

assessment of risk suitable for regulatory acceptance or to design in

vivo studies that should be undertaken to support a submission. In

such cases, features including mechanistic interpretation, expert

commentary, documentation, performance statistics and support-

ing data are particularly valuable. At this stage of the process,

relatively few compounds are assessed for toxicity and the end-

points can be relatively complex, meaning that training sets for in

silico models tend to be sparse and do not always sufficiently

capture the different mechanistic pathways at work. To overcome

this, collaborative data sharing, through organisations such as

Lhasa Limited, enables participating companies to gain knowledge

of toxicities from proprietary data without revealing confidential

information such as biological targets or chemical structures.

By contrast, these methods have been less commonly applied in

early drug discovery, where the numbers of compounds consid-

ered are much larger and the scientists using the predictions are

less likely to be expert toxicologists. This makes detailed examina-

tion of each prediction, using detailed supporting information,
www.drugdiscoverytoday.com 689
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FIGURE 1

Example scoring profiles defining the ideal criteria (labelled ‘desired value’) for a range of experimental and predicted properties and the importance of each

individual criterion to the overall objective of the project, specifically an orally dosed compound intended for a peripheral target. (a) An example of a profile that

includes experimental potency against the target and predicted ADME properties. (b) Illustrates a profile combining these properties with knowledge-based
predictions of toxicity endpoints. Also shown in (b) is an expansion of the criterion for hepatotoxicity, demonstrating how the impacts of different predicted

likelihoods for this toxicity on the chance of a compound’s success can be reflected by a ‘desirability function’ (blue line). On this graph, the desirability of each

outcome is shown by the blue line and the scale on the y axis indicates the desirability on a scale of 0–1, where 1 indicates the ideal outcome. The histogram shows

the distribution of the different predictions in the current dataset.
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impractical. In this scenario, toxicity predictions must be appro-

priately integrated into decision-making processes to provide

intuitive guidance on reducing toxicity risk and facilitate colla-

boration with expert toxicologists where expert guidance is

required.

Guiding compound design and selection
Balancing toxicity with other factors
A high-quality drug must simultaneously satisfy many property

requirements. Primary among these is achieving sufficient

potency against the intended therapeutic target(s); however, to

be safe and efficacious, a successful compound must also have

appropriate ADME properties and, of course, avoid causing toxic

effects at a therapeutic dose. Therefore, identifying high-quality

lead and candidate compounds is a delicate balancing act, often

described as multiparameter optimisation (MPO) [24].

Predictions of toxicity hazards must be balanced against other

properties and given appropriate weight in the selection and

design of compounds in early drug discovery. As discussed above,

knowledge-based methods for toxicity prediction indicate if a

compound has an increased likelihood of toxicity, but a toxicity

alert is not a guarantee that a compound will be toxic. Therefore,

one would give priority to compounds with no indications of

toxicity over those with an alert, all other factors being equal;

however, an alert might not be a sufficient reason to ‘kill’ a

compound that meets many other requirements. The cost of

incorrectly rejecting a good compound based only upon an uncer-

tain prediction can be high, particularly in the absence of alter-

native options or if methods to mitigate the risk (such as a change

to the dosing regimen) have not been considered.

Methods for MPO, such as probabilistic scoring [25], allow a

project team to define a profile of property criteria that they

require in an ideal compound. Furthermore, as illustrated in

Fig. 1, each property criterion can be assigned an importance to

reflect the impact of a property outcome on a compound’s chance

of success. The results of predictions or experimental property
690 www.drugdiscoverytoday.com
measurements for each compound are then assessed against the

profile to generate a score representing the compound’s likelihood

of success (i.e. the probability of achieving an ideal property

profile). This allows compounds with the best chance of down-

stream success to be effectively prioritised. Furthermore, the

uncertainty in each property value, owing to experimental varia-

bility or statistical errors in predictions, can be explicitly taken into

account to estimate the uncertainty in the overall scores. This, in

turn, makes it clear when compounds can be confidently distin-

guished, based on the available data, and avoids inappropriate

rejection of compounds based on an uncertain prediction or

measurement.

Guiding compound redesign
An advantage of a knowledge-based approach to toxicity predic-

tion is that the structural feature of a compound that is associated

with an increased likelihood of toxicity is identified. This contrasts

with many ‘black box’ statistical methods that provide a predic-

tion with no feedback regarding the underlying relationship to the

compound structure. Highlighting this alert on the structure of the

compound provides valuable information for medicinal chemists

considering optimisation strategies. Coupled with predictive mod-

els of other properties and an MPO method in an interactive

environment, this information can be used to guide the design

of an alternative compound to reduce the risk of toxicity without

having a negative effect on other required properties. Fig. 2 shows

an example of such an ‘interactive designer’.

Analysis of recent drug approvals
To assess the potential value of applying knowledge-based toxicity

prediction, all small molecule drugs approved in 2012 by the FDA

Center for Drug Evaluation and Research (http://www.fda.gov/

downloads/Drugs/DevelopmentApprovalProcess/HowDrugsare-

DevelopedandApproved/DrugandBiologicApprovalReports/

UCM342733.pdf) were analysed against available endpoints in the

Derek Nexus module for StarDrop (http://www.optibrium.com/).

http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/DrugandBiologicApprovalReports/UCM342733.pdf
http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/DrugandBiologicApprovalReports/UCM342733.pdf
http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/DrugandBiologicApprovalReports/UCM342733.pdf
http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/DrugandBiologicApprovalReports/UCM342733.pdf
http://www.optibrium.com/
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FIGURE 2

An example of an interactive designer in which the structural alert giving rise

to the prediction of an increased chance of hepatotoxicity for lumiracoxib is

highlighted in red. Such an environment enables exploration of strategies to

reduce toxicity risk while providing instant feedback on the predicted impact
of structural changes on multiple, relevant properties. Abbreviation: COX2,

cyclooxygenase 2.
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FIGURE 3

Results of predictions from the Derek Nexus module for StarDrop on the 24

compounds approved by the FDA in 2012. (a) The analysis on a per
compound basis and (b) the analysis on a per endpoint basis.
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The structures of these compounds were obtained from PubChem or

NCI and regulatory label information was obtained from the FDA

and/or European medicines Agency (EMA) to identify clinically

observedtoxicitiestogetherwithrelevant black-boxwarnings.Three

endpoints: skin sensitisation and irritation of the eye or skin, were

subsequently removed from the analysis because only one com-

pound was topically administered hence predictions for these

adverse events could not be validated. It should however be noted

thatthesingletopicallyadministeredcompound,ingenolmebutate,

was correctly predicted as a skin sensitiser. The predictions covered a

range of important endpoints including hepatotoxicity, hERG-

channel inhibition, developmental toxicity, teratogenicity, chro-

mosomal damage (in vitro and in vivo), mutagenicity (in vitro) and

carcinogenicity. All of the alerts returned were at the plausible level

(meaning that the weight of evidence is for activity to be observed).

This full dataset is available as Supplementary information. Of the

limited set of 24 compounds, 11 were correctly predicted clean, six

were correctly predicted with toxicities, five were falsely predicted

clean and two were falsely predicted to have toxicities that were not

observed. This is summarised in Fig. 3a. For the dataset of 24
compounds across eight endpoints a total of 16 predictions of

toxicity were made, showing a sensitivity of 55% and a specificity

of 85%. The breakdown of those alerts is shown in Fig. 3b.

Looking at the performance of individual alerts, three complex

high-level endpoints were responsible for the majority of false

predictions. The first, hepatotoxicity is a challenging endpoint to

predict because there are many causes of liver toxicity, and many

possible reasons why it might not be observed. One compound,

aclidinium, was predicted to show hepatotoxicity but this is admi-

nistered as a small inhaled dose making hepatotoxicity an unlikely

event [26]. Two compounds (bosutinib and bedaquiline) were not

predicted to show the observed hepatotoxicity but these were dosed

at very high levels (>400 mg daily) and, in the latter case, toxicity

was only shown when co-administered with other drugs that inhibit

cytochrome P450 CYP3A4, the major clearance route for bedaqui-

line (http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/

204384s002lbl.pdf). Large doses of hepatically cleared compounds

increase the risk of liver toxicity through the saturation of processes

or the build-up of metabolites [27]. Developmental toxicity cur-

rently has only a limited number of alerts in the Derek engine and in

this dataset only one out of the seven observed instances was

correctly predicted. Three of the ‘false negative’ compounds were

kinase inhibitors, which could indicate a lack of historical data from

which to build good models because kinase inhibitors represent a

relatively new class of drugs. There is however, growing evidence

of a relationship between kinase inhibition and chromosomal

and/or developmental toxicity [28], which should support further

development of this alert. A third endpoint, teratogenicity, is

incompletely understood, complex and driven by an array of
www.drugdiscoverytoday.com 691
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FIGURE 4

These ‘chemical space’ plots illustrate how predictions of the potential to cause toxicity can be combined with other experimental and predicted data to guide the
selection of lead series in early drug discovery. Each point in a chemical space represents a single compound and the proximity of points indicates their structural

similarity; 2D path-based similarity calculated by a Tanimoto index [30]. (a) The compounds in a library of compounds with cyclooxygenase 2 (COX2) inhibition

data containing five clusters of similar compounds, coloured by compound score from red (low) to yellow (high). The score was calculated using the profile shown
in Fig. 1a, taking into account only potency and ADME properties. From this it can be seen that multiple clusters contain compounds with high-scoring

compounds. For reference, the point corresponding to celecoxib is identified. (b) The points coloured by predicted likelihood of hepatotoxicity, from which it can

be seen that many regions of chemistry are predicted to have increased likelihood of exhibiting hepatotoxicity. The point corresponding to lumiracoxib, a known

hepatotoxin, is highlighted in this plot. In (c) this information is combined with the data for compound potency, predicted ADME properties and predictions for
mutagenicity and genotoxicity using the scoring profile shown in Fig. 1b. The colours indicate low-scoring compounds in red and high-scoring compounds in

yellow, and the cluster containing the majority of high-scoring compounds is circled.
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pathways – for example, lomitapide exhibited teratogenicity in rats

and ferrets but not in rabbits. Teriflunomide is believed to be

teratogenic through its primary mechanism of action – inhibition

of dihydroorotate dehydrogenase – an essential enzyme for nucleo-

tide synthesis (http://www.accessdata.fda.gov/drugsatfda_docs/

label/2013/203858s002lbl.pdf).

This analysis suggests that knowledge-based toxicity predictions

can be an effective tool to identify potential toxicities before a

compound reaches the clinic. By flagging potential toxicities early

in the drug development process, hazards can be assessed through

early screening before significant investments have been made and

by applying MPO analyses, these risks can be balanced against the

potential benefits a drug might provide. This is highlighted in the

case of carfilomib which despite giving six alerts (four of which

were confirmed and two were not assessed; see Supplementary

information), has been accepted as a treatment for cancer when

other treatments are unsuccessful.

Application in early drug discovery
To illustrate one workflow for the practical application of these

methods in the context of a hit-to-lead project, we have used a

public domain dataset, derived from the ChEMBL database

(https://www.ebi.ac.uk/chembl/). This dataset contains 152 com-

pounds from multiple chemical series for which the inhibition of

the cyclooxygenase 2 (COX2) enzyme has been determined

experimentally, including the drugs celecoxib and lumiracoxib.

This is typical of a dataset containing primary screening data in a

hit-to-lead project targeting a fast-follower for an existing drug.

Fig. 4a shows the ‘chemical space’ of this library, in which the

colour of a point represents the score of each compound against the

scoring profile shown in Fig. 1a, including the experimentally

measured target inhibition and a range of predicted ADME
692 www.drugdiscoverytoday.com
properties, but not considering predicted toxicity. This illustrates

the distribution of the compound scores across the chemical diver-

sity of the library and indicates that there are three clusters of similar

compounds that are likely to yield compounds with a good balance

of potency and ADME properties. These high-scoring compounds

include the drugs celecoxib and lumiracoxib.

The potential for these compounds to cause toxicities was then

predicted using the Derek Nexus module for StarDrop for end-

points including mutagenicity, hepatotoxicity and genotoxicity.

Mutagens cause heritable changes to DNA, whereas genotoxins

damage a cell’s genetic material but do not necessarily cause

permanent damage to DNA sequences. Fig. 4b shows the predic-

tion of hepatotoxicity mapped onto the chemical space of the

COX2 library, which clearly shows that several of the clusters have

plausible evidence of hepatotoxicity and should be considered

with care. Among those compounds with evidence of hepatotoxi-

city is lumiracoxib, which was withdrawn from the market in

several countries, mostly as a result of hepatotoxicity concerns,

and has never been approved for use in the USA.

The toxicity predictions can be combined with the in vitro and in

silico data for other properties in an overall scoring profile (Fig. 1b)

giving appropriate weight to the predictions of toxicity against the

other factors. The resulting scores are plotted in the chemical space

shown in Fig. 4c, in which one cluster clearly stands out as having

several compounds with the highest likelihood of yielding a high-

quality lead series with good ADME properties and reduced chance

of toxicity.

It is noteworthy that celecoxib (the gold-standard COX2 inhi-

bitor) [29] is also identified as having plausible evidence of toxi-

city, illustrating the importance of balancing the potential for

toxicity against the benefits. One advantage of avoiding hard

filters, by using a weighted scoring profile and taking into account

http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203858s002lbl.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/203858s002lbl.pdf
https://www.ebi.ac.uk/chembl/
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the uncertainty in the underlying data, is that the series including

celecoxib and lumiracoxib would not be rejected outright. For exam-

ple, the score for celecoxib (0.15 � 0.08) is statistically not signifi-

cantly different from the top-scoring compound (0.45 � 0.30). This

indicates that a rigorous strategy should select a small number of

compounds from this series to confirm experimentally the required

properties before making a final choice of lead series.

Finally, considering the structure of lumiracoxib in Fig. 2, a

single functionality is highlighted as the cause of the structural

alert for increased hazard of hepatotoxicity, in common with all

other members of this series. This suggests that approaches for

reducing the associated risk, while retaining potency and other

desirable properties, can be investigated at an early stage before

rejecting this class of compounds.

Concluding remarks
A key strategy to reduce the long timelines and spiralling cost of

pharmaceutical R&D is to target safe and efficacious compounds as

early as possible in the drug discovery process. Taking all available

information into account, from predictive and experimental

sources, as early as possible, increases the likelihood of delivering

a high-quality lead and, ultimately, a development candidate with

an improved chance of success in the clinic. Furthermore, a lead

series with a good balance of properties is less likely to require

many, long and costly lead optimisation cycles; an important

factor identified to reduce the overall cost per marketed drug [2].
Knowledge-based prediction of toxicity has an important part to

play in this process, guiding the selection and optimisation of

compounds when in vitro and in vivo toxicity data are often not

available, owing to the high cost and long timescales of experi-

mental measurements. However, as with any predictive method,

the uncertainties in the predicted outcomes should be taken into

account and appropriate weight should be given to these results,

relative to other property requirements for a high-quality com-

pound for a drug discovery project’s objective. In this article, we

have illustrated how toxicity predictions can be incorporated into

an MPO approach to identify compounds quickly that have an

appropriate balance of properties and guide the optimisation of

compounds with potential liabilities.
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